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Abstract. We study a recently developed, Pade-type method of series analysis which 
allows for the leading confluent singularity. A number of properties are described and 
by applying the method to various test series some pitfalls of the technique are revealed. 

In a recent series of papers (Adler et a1 1982a, b, c, Adler and Privman 1982) a new 
method of series analysis for confluent singularities was proposed and applied. 
Confluent singularities are a subject of considerable interest owing to their importance 
in analysing experimental data on systems near critical points (Ahlers 1980, and 
references therein), and Monte Carlo simulations of critical behaviour (Stauffer 1981, 
Djordjevic et a1 1982), and also because a proper treatment of them serves to reduce 
systematic errors present in the usual Pad6 approximant methods of series analysis. 
Recent series expansion studies include: tests of hyperscaling and of the consistency 
between the field-theoretic renormalisation group (RG) and series estimates of the 
critical exponents y and v in the d = 3 king model (Zinn-Justin 1981, Chen er a1 
1982, Adler et a1 1982b); removal of discrepancies between the conjectured values 
of y, /3 and S and several series estimates for d = 2 percolation (Adler et a1 
1982a, c, Privriian and Vagner 1982), and between the conjectured and series estimates 
of a, /3 and y for the d = 2, q = 3 Potts model (Adler and Privman 1982) study of 
the d = 3 self-avoiding walks (McKenzie 1979). Several methods of analysing confluent 
terms have been suggested (consult Adler et a1 ( 1 9 8 2 ~ )  for a critical overview and 
references). In this paper we investigate further the method proposed by Adler et a1 
(1982a); a number of properties are considered and by applying the method to various 
test series some pitfalls of the technique are revealed. 

Singular behaviour close to a critical point x c  is predicted by the RG theory (Wegner 
1972a, b) to be of the form 

F ( x )  = + ( x c - x ) p y  1 + a l F ( X c - X ) A ~  + b , f ( X c - X )  + . . .] (1) 

as x + x , ,  where x is a temperature-like variable, h denotes the leading critical 
exponent (further general powers of ( x , - x )  appear in the last factor), with hl>O 
being the first confluent exponent ( A ,  = - y 2 / y I  in terms of the RG eigenexponents 

Consider estimation of h using the biased Dlog Pad6 method. We will assume 
that x,(T,) is known exactly or that a good estimate is available and derive a truncated 

y 1 > o > y * > .  . .). 
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power series for H(x)  = (x, - x ) ( F ' / F )  (from a finite number of terms in the series 
of F ( x ) ) :  

(2) 

so that H(x,) = h. The function H(x)  and the value H(x,) are estimated by calculating 
different Pade approximants (Baker 1975) H I L , M 1 ( ~  1, Pude' sequences are not expected 
to converge well ut brunch points, such us xc (the term ( X ~ - X ) ~ '  is not analytic when 
A l  is non-integral). Numerical evidence suggests that HIL.M1(xc) often deviates from 
the correct h (when known) by an apparently stable, small, non-zero value. (Consult 
Adler et a1 (1982c, ch 3) for further discussion.) 

In order to treat the non-analyticity arising from the leading confluent term, Adler 
et a1 (1982a, b, c), following Roskies (1981), propose to transform the series for F ( x )  
to an expansion in powers of 

H ( x )  = ( x , - x ) ( F ' / F )  = h - [a lAl (Xc-x )A'  +.  . .]/[1 + u ~ ( x , - x ) ~ '  +. . .], 

y = 1 - (1 -x /xc)&,  (3) 

where A is regarded as a variable parameter and an exact x c  value is used as an input 
(there are likely further features of the method studied below that arise when T, is 
not known accurately, but we will not consider this case here). Then they examine 
Pad6 approximants, Gf,M'(y),  to 

GA(Y 1 = Y )  d In F(x  (Y, A ) ) / ~ Y  
= h  - [ i lA1(l-y)A' 'A+.  , . ] / [ l + C i l ( l - ~ ) " ' / ~ + .  . .] (4) 

where Cil = U  lxc I ,  The choice A = 1 simply reproduces the usual Dlog Pad6 evaluation 
of h -Gf;y1 (1). Adler et a1 (1982a, b, c), however, considered a family of L(A) 
curves in the (A, h )  plane, defined by 

A 

i ( A )  = Gf 'M1( l ) .  ( 5 )  

Observe that when A = AI the (1 - y)A''A terms in (4) become analytic. The case A - A1 
was studied by Adler et a1 (1982a). Here we examine all the possible choices of A 
which make (1 analytic. These are A = Al /k ,  with k = 1 ,2 ,3 ,  . . . . For A close 
to A l / k  we may linearise GA(y)  in the difference A - A l / k .  Retaining the leading 
terms as y + 1 yields 

(6) 

This result implies that the effect of the leading con-analytic contribution is to produce 
a small non-zero slope of the E(A) = G f s M 1 ( l )  curves in the (A,  h )  plane. For ideal 
estimation of h and AI,  the i ( A )  curves should intersect with small slopes at the points 
A =  Al /k ,  h =hexact in the (A, h )  plane. However, finite series effects and higher 
confluent terms cause deviations from this ideal situation. In the series previously 
studied one actually observes a region of 'convergence' of L(A) curves (with a large 
number of intersections) at A = A I  (corresponding to k = 1) or no 'convergence region' 
at all (see Adler et a1 1982a, b, c, Adler and Privman 1982, Privman and Vagner 
1982). In  some cases (Adler and Privman 1982) a 'convergent' structure was also 
found at A -  1, and it was shown that it reflects the presence of the leading analytic 
confluent term proportional to b l F  in (1). 

Note that some finite series effects are present even when the influence of the 
higher confluent terms is negligible. Thus suppose that the first N + 1 coefficients of 

G A ( y ) = h  +Zlk2(1-yIk I n ( l - y ) ( A - A l / k ) + O ( ( l - y ) k ) + .  . . . 
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the power series for F ( x )  are available, 
N 

F ( x ) -  F,,x", 
k = O  

(7) 

from which the ( N  - 1)-power series for GA(y) may be derived. When A =  Al/k, we 
obtain from (4) (assuming no higher terms) 

This ratio of two k-degree polynomials will be reproduced exactly by a Pad6 
approximant when both L 5 k and M L k. In most applications (Baker 1975), near- 
diagonal approximants are used. As a rough estimate, these will approximte GA,lk(y) 
exactly for k = 1,  2, , . . , k,,,, where k,,, < ( N  - 1)/2.  In calculations of Adler et a1 
(1982a, b, c), Adler and Privman (1982) and Privman and Vagner (1982) nine 'central' 
Pad6 approximants were chosen (rather arbitrary): [M - 2, M + 21, [M - 1, M + 13, 

1 ,  M - 21 for even ( N  - 1)  = 2M and [M - 1, M + 21, [M, M + 13, [M + 1, MI, [M + 
2 ,M- l ] ,  [ M - l , M + l ] ,  [M,M], [ M + l , M - l ] ,  [ M - l , M ] ,  [M,M-l ]  for odd 
( N  - 1) = 2M + 1, Making such choice of Pad6 approximants, we may obtain a stronger 
criterion: all L(A) curves will intersect at ( A l l k ,  hexact) for k = 1 , 2 ,  . . . , k,,, with 
k,,, = ( N  -4)/2 (for both even and odd (N - 1)). As an illustration of what is entailed 
we plot in figure 1 the L(A) curves obtained from the 12-power series ( N  = 12) for 
the test function 

[M, MI, [ M i  1,  M -  13, [M+2, M -21, [ M - 2 , M +  11, [ M -  1,Ml, [M, M -  11, [ M +  

F ( x ) = ( l  -x)-1.2[1+(1 -x)o.8], (9) 
so that x c  = 1, h = 1.2, A I  = 0.8, a l F  = 1 and no further confluent terms are present. 
Evidently, all nine Pad6 curves intersect at (Al ,  h ) ,  (A1/2,  h ) ,  ( A 1 / 3 ,  h )  and (A1 /4 ,  h )  
as anticipated. However, the most interesting feature of L(A)  curves is a systematic 
deviation from the correct h value, h = 1.200, when A is away from the analyticity 
points. At A = 1 the nine approximants which we consider spread over the range (not 
reproduced in figure 1) 

h = 1.189k0.002, (10) 

120Lt  

~ 

1202 -  
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119& 

1 1 1 I 
0 2  O L  06 08 

A 

Figure 1. Curves of L ( A )  for the test function (9) with h = 1.200, A I  =0.8 and no 
higher-order terms. 
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thus a (rather small) systematic error, about 1%, is present in this biased PadC estimate 
of h. 

Higher confluent terms will complicate the pattern of 6 ( A )  curves. Consider, for 
example, the addition of an analytic term, as in (l), with a small amplitude blf .  In 
figure 2 we display results for the 12-power series expansion of the test function 

(11) F ( x )  = (1 - X ) - y 1  + (1 - X ) O . *  + 0.1( 1 - x ,I. 

h 

1 2 0 4  

12021 

1 2 0 0 ~  

I 

1 1 9 7  

1 l%r 

1 1 I I 
0 2  0 4  06 OB 

h 

Figure 2. Curves of i ( A )  for the test function ( 1 1 )  with a ‘small’ ( b l , = / a l ~  =r3.1) analytic 
confluent term present. 

The overall trend of 6 ( A )  curves in figure 2 is similar to that in  figure 1, including the 
systematic error in h values as A +  1. There are, however, two new effects arising 
from the next-to-leading confluent terms. The first is the presence of many weak 
poles in the &(A) curves close to points A l / k .  Such poles also appeared within the 
k = 1 ‘convergence region’ (the only one present) in the studies of several percolation 
series (Adler et a1 1982a, c) and they made the identification of the correct region 
more difficult. These poles probably reflect ‘attempts’ of Pade approximants to mimic 
the weak branch cuts introduced in GA, see equations (4) and (8), by the higher 
confluent terms when superimposed on an analytic background at A = A l / k .  In fact, 
Ga(y) is non-analytic away from A = A l / k  as well. However, only when the branch 
cut is weak, the poles of GF.M’(y)  will be very close to the branch point (y  = 1) and 
presumably pass through it at some A = A l / k .  The above argument is based on a 
numerical experience and we have no convincing ‘rigorous’ derivation. 

The second effect of the higher terms is a distortion of the ‘intersection regions’. 
Those with higher k are more influenced and are usually completely destroyed when 
a number of terms with exponents higher than A I  are present, including the b l F  term 
(figure 2 )  and terms with other A,, both integer and non-integer (this observation is 
based on other test-functions studies, not reported here). In all the calculations of 
Adler et a1 (1982a, b, c), Adler and Privman (1982) and Privman and Vagner (1982) 
only the k = 1 convergence region seemed present or there was no convergent structure 
at all. We have no ‘rigorous’ explanation of the above effect; a qualitative rationalisa- 
tion is that presence of additional terms in the numerator and the denominator of 
GA(y), equations (4) and (8), requires G F S M 1 ( y )  with higher L and M for accurate 
approximation, thus effectively reducing k,,,. 
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In figure 2 ‘convergence regions’ with k > 1 have not completely disappeared. In 
such cases one can supplement the present method with some other method of 
estimating AI (see Adler et a1 1982c for references). The k = 1 ‘convergence region’ 
(distorted by weak poles) is enclosed in a box in figure 2, suggesting A1 and h estimates 

h = 1.2002*0.0013, 112) 

A1 -0.80*0.05. (13) 

In cases where the higher-order confluent terms have relatively large amplitudes 
(comparable to a l F )  the present method must clearly be used with caution. An 
instructive example is provided by the 12-power series for the test function 

F ( x ) = ( l - x ) - 1 ~ 2 [ 1 + ( l - x ) 0 ~ 8 - ( l - X ) + 2 ( 1 - X ) 1 ~ 6 ] ,  (14) 

for which ((A) curves are plotted in figure 3.  Here b l F  = -1 and a term with an 
exponent 2Al, as is normally to be anticipated, and a coefficient 2 is introduced. This 
test function illustrates most of the problems and pitfalls possible when the leading 
confluent term is studied by the present method. The central ( k  = 1) ‘convergence 
region’ at A = AI = 0.8 (A in figure 3) is cut by poles. Furthermore, even if the poles 
are disregarded, h estimates from this k = 1 region possess a residual systematic error 
(which is, however, less than the deviation from h,,,,, = 1.200 if one uses the ((A = 1) 
values). At A = 1 there is a ‘convergence region’ (B in figure 3) which may be attributed 
to the 61F term (see Adler and Privman (1982)) and whose presence makes apparent 
error estimate of the usual biased Pad6 (((A = 1) values) unrealistically small, since 
the central value is not accurate. 

, 2 0 4 -  

1 zoo/ 
h 

1192- 

Figure 3. Curves of 6 ( A )  for the test function (14) with relatively ‘large‘ analytic and 2 P 1  
confluent terms (see text). 

In figure 3 only the k = 2 ‘higher k convergence region’ survived, at C (A = A1/2 = 
0.4); it is well defined and happens to reproduce the correct h value. Evidently, there 
is a danger of making the erroneous identification A l  = 0.4. Finally, there is some 
‘structure’ at A-0.6 (D in figure 3)  which seems to have no obvious origin. We 
conclude that a complicated pattern of ‘convergence regions’ in the Adler et a1 (1982a) 
method is an indication of interfering, higher-order confluent terms. In such cases 
the method is certainly limited. 
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We do not attempt here to review other methods of single-variable series analysis 
of confluent singularities (see Adler et a1 1 9 8 2 ~ ) .  It should be noticed, however, that 
several known methods (Guttmann and Joyce 1972, Baker and Hunter 1973, Fisher 
1977, Fisher and Kerr 1977, Hunter and Baker 1979, Fisher and Au-Yang 1979, 
Bessis et a1 1980, Rehr et a1 1980, Nickel 1981) would ‘solve’ all our test functions 
exactly (when the power series is long enough). However, an infinite sequence of 
higher confluent terms introduces inherent instability (Nickel 1981, see also Adler et 
a1 1982c) in these methods as well. 

A systematic way out of these difficulties is to employ multi-variable series 
expansions, in conjunction with the multi-variable first-order partial differential 
approximants (Chen et a1 1982, Fisher and Chen 1981, Fisher and Styer 1982). 
However, multi-variable expansions require much labour, both in their derivation 
and analysis. Therefore, in favourable cases, especially when x c  is known, the method 
of Adler et a1 (1982a) may be useful; a reduction of systematic errors relative to 
normal Pad6 methods may be anticipated. Our study of various test functions reveals 
definite pitfalls that must be guarded against in future applications. 
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